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Abstract. Using Monte Carlo simulations, we study the phase behaviour of systems with a
short-ranged repulsive ‘shoulder’ potential. In analogy to systems with a short-ranged attractive
interaction, the shoulder potential leads to an isostructural solid–solid phase transition. We show
that the range of interactions for which a solid–solid transition is possible is much wider for
repulsive than for attractive interactions.

It is well known that weak, long-ranged attractive intermolecular forces lead to a liquid–
vapour transition (see e.g. [1]). Recently, we considered the opposite limit of attractions
that act over distances that are small compared to the hard-core radius of the particles [2].
Such interaction can occur in certain colloidal systems. We found that a dense system
of spherical particles with very short-ranged interaction may exhibit a solid–solid transition
that is in many ways reminiscent of the liquid–vapour transition. In particular, the transition
takes place between two phases that have thesamestructure. And secondly, the line of
(first-order) solid–solid transitions ends in a critical point. We found that the critical density
depends strongly on the range of the intermolecular interaction. In the square-well model
considered in reference [2] the solid–solid critical point crosses the melting curve if the
range of attraction is more than 6% of the hard-core diameter. The critical temperature is
much less sensitive to the range of attraction.

Subsequent theoretical studies support the existence of such behaviour for a variety
of models [3–6], even though, thus far, direct experimental observation of this solid–solid
transition is lacking. However, one of the predicted consequences of the vicinity of a solid–
solid transition in two dimensions is the stabilization of the hexatic phase [7], and recent
experiments by Marcus and Rice [8] seem to support this scenario.

An isostructural solid–solid transition can also take place in systems involving only
repulsive interactions. It is known that isostructural solid–solid transitions can occur in
dense Cs and Ce [9]. These transitions are believed to be due to the softness of the
intermolecular potential associated with a pressure-induced change in the electronic state of
the metal ions. Theoretical work by Stell and Hemmer [10], and simulations by Alder and
Young [11] indicate that such softness may indeed result in a solid–solid transition. Kincaid,
Stell and Goldmark [12] modelled the interaction potential of such systems by a so-called
square shoulder (a hard-sphere potential augmented with a repulsive plateau) and calculated
the phase behaviour by applying perturbation theory. In this paper we compute the phase
behaviour of a system of spherical particles interacting via a square-shoulder potential. The
difference from earlier work is that we focus on a relatively short-ranged shoulder potential.
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Hence the model that we consider is the repulsive counterpart of the narrow-square-well
model studied in reference [2]. Such short-ranged repulsive interactions may occur in a
variety of colloidal and macro-molecular systems. A possible example is a colloid that is
sterically stabilized by partly interpenetrable layers of grafted chain molecules.
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Figure 1. A rough sketch of the influence of the rapid change in the potential energyU on the
total free energyF = U − T S. The top figure shows the situation for the square-shoulder case,
whereas the bottom figure refers to a square-well system. All curves are plotted as functions of
the system volumeV .

Kincaid, Stell and Goldmark [12] studied the phase behaviour of spheres with a short-
ranged repulsive interaction potential of the form

v(r) =
 ∞ 0 6 r < σ

ε σ 6 r < σ + δ

0 r > σ + δ

(1)

where σ is the diameter of the spherical particle andε is the height of the repulsive
shoulder. Using perturbation theory, Kincaidet al calculated the isostructural solid–solid
phase transition in this kind of system. Basically, the mechanism of this phase transition
is the same as for the square-well model as described in reference [2]. A first-order phase
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transition takes place if there is an inflection point in the free energy as a function of volume.
The free energy is the sum of the potential energyU and an entropy term−T S. We know
that this entropy term (or equivalently the free energy of a reference hard-sphere system
with diameterσ ) is a monotonically decreasing function of the volume. For the square-well
system the potential energy increases slowly with volume, suddenly rises steeply when the
average distance between the particles approaches the well width, and levels off again for
lower densities. At low enough temperatures the total free energy will show the inflection
point which is indicative of a first-order phase transition, as is illustrated in figure 1.

In the case of the square-shoulder systems the potential energy decreases with volume.
However, as the volume increases beyond the point where the shoulders begin to overlap, the
potential energy will first decrease steeply and then level off. At low enough temperature
this variation of the potential energy will also lead to an inflection point in the volume
dependence of the free energy, as is shown in figure 1. There are, of course, differences
from the square-well case. First of all, for the same range of interaction, the inflection
point of the free energy, and hence the critical point will occur at higher densities. The
other major difference will be at low temperatures. For the square-well potential, the low-
density solid is only stable above the triple-point temperature (and disappears completely
when the range of attraction exceeds 6% of the hard-core diameter). In contrast, for the
repulsive shoulder potential, the expanded solid is stable in the low-temperature limit. Once
the solid–solid critical point crosses the melting curve, we expect that the expanded solid
phase will only exist as an isolated solid pocket in the liquid phase. This is reminiscent of
the behaviour considered in a model proposed by Pooleet al [13] to account for the phase
behaviour of supercooled water.

In order to compute the phase diagram of the square-shoulder system, we first must
determine the dependence of the Helmholtz free energy of the solid on density and
temperature. We use thermodynamic integration to relate the free energy of the square-
shoulder solid to that of a reference hard-sphere solid at the same density (see e.g. [15]):

F(ρ, ε∗) = FHS(ρ) +
∫

dε∗
(

∂F

∂ε∗

)
= FHS(ρ) +

∫
dε∗ 〈U〉ε∗

ε∗ (2)

whereε∗ = ε/kBT is the reduced shoulder height,ρ = N/V is the number density and
〈U〉 is the average potential energy of the system. The instantaneous potential energy is
equal to the number of pairs of atomsNp that are within the range of the potential times
the height of the potential shoulderε. The dimensionless free energy per particle now is
simply

F(ρ, ε∗)
NkBT

= FHS(ρ)

NkBT
−

∫
dε∗ 〈Np〉ε∗

N
. (3)

The free energy of the three-dimensional hard-sphere solidFHS is well known and can
be accurately represented using the analytical form for the equation of state proposed by
Hall [16]. The presence of a first-order phase transition in the square-shoulder solid is
signalled by the fact that the Helmholtz free energy becomes a non-convex function of
the volume. The densities of the coexisting phases can then be determined by a standard
double-tangent construction.

In order to map out the phase diagram of the square-shoulder solid over a wide range
of densities and temperatures as a function of the width of the repulsive shoulder, several
thousand independent simulations were required. To keep the computational costs within
bounds, we chose to simulate a relatively small system. With a small system size, finite-size
effects are expected, in particular in the vicinity of a critical point. However, away from
critical points finite-size effects should be so small that they will not affect the conclusions
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that we draw below. In what follows, we use reduced units, such thatε/kB is the unit of
temperature, andσ , the hard-core diameter of the particles, is the unit of length.

All simulations on the three-dimensional system were performed on a face-centred cubic
(fcc) solid consisting of 108 particles. This is presumably the stable solid structure for hard
spheres at high density and also for hard spheres with a narrow shoulder potential. In fact,
for hard spheres, the difference in free energy of the face-centred cubic and hexagonal close-
packed (hcp) structures is so small that it is not known which one is the more stable. Our
calculations were performed for the fcc structure, but the results would have been virtually
the same for the hcp structure. Other crystal structures (e.g. simple cubic and body-centred
cubic, bcc) can be ignored at densities aboveρ = 1.3, because they have a lower maximum
packing density. At lower densities, other solid phases could be stable, at least in principle.
In fact, very recent calculations of Mederoset al on a system with a shoulder potential
width of δ = 0.1 suggest that the bcc crystal structure may be stable at low temperature
and densities smaller thanρ = 1.1 [14].

The simulation box was chosen to be cubic and periodic boundaries were applied. The
densities ranged fromρ = 0.9 which is below the hard-sphere melting point toρ = 1.414
which is almost at close packing (ρ0 = √

2). The temperature of the system was varied in
the range 0< 1/T < 2, in steps of 0.1. Simulations were performed forδ = 0.00, 0.01,
0.02, 0.03, 0.04, 0.05, 0.06, 0.07 and 0.08. For every value of the shoulder widthδ we
performed some 1000 MC simulations of 20 000 cycles each.

In order to perform the double-tangent construction on the Helmholtz free energy, all
simulation data were fitted to an analytical function ofρ, δ andT . We chose to use a fit
function that reproduced the correct limiting behaviour at close packing. In particular, we
used the following functional form:

Np(δ, T −1, x)/N = 3 + 3 erf(x − 1) + e−2x+5
1,2,6∑

i,j,k=0

cijkδ
iT −j xk. (4)

The parameterx in equation (4) is defined as the ratio of shoulder widthd to the distance
a that characterizes the expansion of the solid from close packing:a ≡ rnn − σ , wherernn

is the average nearest-neighbour distance.x is simply related to the density, through

x = δ

a
= δ

(ρ0/ρ)1/3 − 1
. (5)

For largex—i.e. near close packing—the value of the function in equation (4) approaches
half the number of nearest neighbours per particle.

Table 1. Best-fit coefficientscijk for equation (4).

k

i j 0 1 2 3 4 5 6

0 0 13.442 −29.520 26.414 −12.292 3.128 −0.412 0.022
0 1 −104.645 231.297 −206.447 95.183 −23.950 3.127 0.165
0 2 98.844 −226.082 209.598−2191.837 26.472 −3.612 0.200
1 0 −291.152 692.956 −677.704 348.211 −99.113 14.811−0.907
1 1 1861.480 −4408.039 4287.814 −100.732 620.43 −92.139 5.606
1 2 −1218.127 2865.821−2775.223 1415.943−401.124 59.750−3.652

The coefficients of the best fits to the numerical data are given in table 1. These fits
reproduce the numerical data to within the statistical error. Using the functional forms given
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Figure 2. Computed phase diagrams in theT , ρ plane for the fcc structure of 108 square-
shoulder particles. The solid curves correspond to shoulder widthδ = 0.01, the dashed curves
to δ = 0.03 and the chain curves toδ = 0.08. The thick curves indicate simulation results. The
thin curves are extrapolations to the exact results atT = 0.

by equation (4) to represent the numerical data, we computed the free energy of the solid
as a function of temperature and volume, using equation (3). The resulting free-energy
functions were checked for possible non-convex dependence on the volumeV . Whenever
such an indication of a first-order phase transition was found, the densities of the coexisting
phases were determined by equating the pressures and chemical potentials in both phases
using the standard double-tangent construction. The critical temperature of the solid–solid
coexistence curve was estimated to be the point where the free-energy curve first developed
an inflection point. Of course, this estimate is likely to depend somewhat on the system
size. Moreover, the analytical form of equation (4) forces the classical (mean-field) critical
behaviour on the solid–solid binodal. We have not attempted to study the true critical
behaviour of the solid–solid transition.

Although the solid–solid transition coexistence curves can be obtained from simulations,
we have yet to demonstrate that this transition involves phases that are thermodynamically
stable. In particular, the melting transition might pre-empt the solid–solid phase separation.
It is therefore essential to study the fluid–solid transition as well. We computed the
solid–fluid coexistence curve by means of thermodynamic integration. The Helmholtz free
energies of the square-shoulder solid and fluid were calculated according to equation (2)
using data from our simulations in combination with the known free energies of the hard-
sphere reference fluid [17] and solid [16]. For the simulation of both the fluid and the solid,
we used a system of 108 square-shoulder spheres in a periodic cubic box. The density was
varied fromρ = 0.8 to ρ = 1.04 in the fluid and fromρ = 0.9 to ρ = 1.2 in the solid
phase. The shoulder width ranged fromδ = 0.01 to δ = 0.08. The simulation parameters
were equal to those chosen for the simulations of the high-density solid. In the case of
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Figure 3. Computed phase diagrams in theT , ρ plane for the fcc structure of 108 square-well
particles [2]. Starting with the coexistence curve on the right, from right to left the curves
correspond to the well widthsδ/σ = 0.01, 0.02, 0.03, 0.04, 0.05 and 0.06. The upper dashed
fluid–solid coexistence curve refers to a well width ofδ/σ = 0.07 and shows that the solid–solid
transition has become metastable at this point. The critical points are indicated by filled circles,
the triple points by open circles. The critical point atρ = √

2, corresponding toδ/σ = 0, was
computed using the lattice model described in reference [2].

a solid we started with an expanded close-packing configuration whereas for the fluid an
initial random configuration was compressed to the required density. All of the simulations
were equilibrated for 20 000 cycles before data was collected in a production run of 20 000
cycles. To calculate the fluid–solid coexistence one needs the absolute free energy of both
the reference fluid and the reference solid phase. The free energy of the hard-sphere fluid
was calculated using the accurate Carnahan–Starling equation of state [17], whereas the Hall
equation of state [16] was used in the solid region together with an absolute free-energy
value obtained from simulations by Frenkel and Ladd [18]. Using these reference free
energies and the simulated average internal energies in equation (2) we were able to obtain
the coexistence curves for the fluid–solid transition.

Figure 2 shows the computed square-shoulder phase diagrams forδ = 0.01, 0.03 and
0.08. As the simulations did not extend belowT = 0.5, we extrapolated the binodals to
zero temperature. For the sake of comparison, we also show the phase diagram for the
corresponding square-well model in figure 3 (see reference [2]). The differences between
the repulsive and attractive systems are striking:

(1) as expected, the critical densities for the shoulder potential are higher than those for
the square-well model;

(2) the solid–solid binodals go all the way toT = 0, where effectively two close-packed
solids of hard spheres are in coexistence with each other: one in which the diameter of
spheres corresponds toσ + δ and a second with a hard-sphere diameterσ ;
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(3) the fluid–solid coexistence region changes gradually from theσ hard-sphere case at
T = ∞ to theσ + δ hard-sphere case atT = 0.

Extrapolation of the critical density to larger values ofδ leads to the estimate that
the solid–solid transition will become metastable with respect to the fluid–solid transition
at δ ≈ 0.25. Note that this critical value ofδ is much larger than for the square-well
case. The fact that solid–solid transitions are much more robust for shoulder potentials
than for attractive well systems suggests that it may be easier to observe such transitions
experimentally in colloidal systems with an effective shoulder potential. This holds not only
for the solid–solid phase transition as such, but also for the hexatic phase that is induced
by the solid–solid transition in two-dimensional systems [7, 19]. An added advantage of
the repulsive-shoulder-potential colloids is that they are less likely to form a gel that will
prevent crystallization.
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